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Abstract

This paper analyzes—both empirically and theoretically—how fluctuations in uncer-
tainty interact with financial market imperfections in determining economic outcomes.
In a standard bond-contracting framework, an increase in uncertainty benefits equity
holders at the expense of bondholders, and to the extent that firms face significant
frictions in financial markets, increased uncertainty implies a higher cost of capital
and hence a decline in investment. The reduction in credit supply also hampers the
efficient reallocation of capital and causes an endogenous decline in total factor produc-
tivity (TFP) that amplifies the economic downturn. Using both aggregate time-series
and firm-level data, we find strong evidence supporting the notion that financial fric-
tions play a major role in shaping the uncertainty-investment nexus. We then develop
a tractable general equilibrium model in which individual firms face time-varying un-
certainty and imperfect capital markets when issuing risky bonds and equity to finance
investment projects. We calibrate the uncertainty process using micro-level estimates
of shocks to the firms’ profits and show that the combination of uncertainty shocks and
financial frictions can generate fluctuations in economic activity that are observationally
equivalent to the TFP-driven business cycles.
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1 Introduction

The countercyclical behavior of the cross-sectional dispersion of economic returns such as

labor income, business cash flows, and equity valuations is one of the stylized facts of

cyclical fluctuations.1 In macroeconomics, irreversible investment provides the traditional

mechanism through which changes in uncertainty affect economic activity (Bernanke [1983],

Dixit and Pindyck [1994], Caballero and Pindyck [1996], and more recently, Bloom [2009]

and Bloom et al. [2009]).2 Financial market imperfections provide an alternative, though

not necessarily an exclusive, channel through which fluctuations in uncertainty can affect

economic activity. In the standard framework used to price corporate debt (Merton [1974]),

the payoff structure of levered equity—under limited liability—resembles the payoff of a

call option, while the bondholders face the payoff structure that is equivalent to that of an

investor writing a put option. An increase in the riskiness of the firm’s assets thus benefits

equity holders at the expense of bondholders, implying a rise in the default-risk premium to

compensate bondholders for increased uncertainty. To the extent that default is costly and

external funds command a premium, an increase in uncertainty raises the costs of capital

and causes a decline in investment spending.

The aim of this paper is to investigate—both empirically and theoretically—the rela-

tionship between uncertainty and investment in the context of imperfect financial markets.

First, we construct a proxy for idiosyncratic time-varying economic uncertainty using daily

firm-level stock returns for the U.S. nonfinancial corporate sector. We use this uncertainty

measure to examine the dynamic interaction between output, investment, uncertainty, and

credit spreads on corporate bonds—an indicator of financial stress—within a structural vec-

tor autoregression (VAR) framework. Our empirical results indicate that conditions in the

corporate debt markets are an important conduit through which fluctuations in uncertainty

are propagated to the real economy. Unanticipated increases in uncertainty lead to a sig-

nificant widening of credit spreads, a drop in output, and a protracted decline in business

fixed investment.

We complement this analysis by constructing a new firm-level panel data set that com-

bines information on prices of individual corporate bonds trading in the secondary market

with our estimates of firm-specific uncertainty and the issuers’ income and balance sheet in-

formation. Results from this panel-data analysis confirm the aggregate time-series findings:

Conditional on the firm’s leverage, profitability, and other indicators of credit quality, our

firm-specific measure of uncertainty is an important determinant—both economically and

1See, for example, Campbell and Taksler [2003], Storesletten et al. [2004] Eisfeldt and Rampini [2006],
and Bloom et al. [2009].

2As shown by Abel [1983], Veracierto [2002], and Bachmann and Bayer [2009], the effect of uncertainty on
investment in the presence of irreversibilities can be theoretically ambiguous, and it depends importantly on
the assumptions regarding the initial accumulation of capital, market structure, and the equilibrium setting.
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statistically—of credit spreads on the firm’s outstanding bonds. According to our results, an

increase in uncertainty of 10 percentage points boosts credit spreads about 15 basis points,

an economically substantial effect given the extent of the observed variation in idiosyncratic

uncertainty.

We also find that conditional on investment fundamentals—that is, proxies for the

marginal product of capital—the long-run elasticity of investment demand with respect

to uncertainty lies in the range between -0.70 and -0.40, implying that a 10 percentage

point increase in idiosyncratic uncertainty leads to a decline in the investment rate between

2.0 and 3.5 percentage points. However, once the information content of credit spreads is

taken into account, the impact of uncertainty on investment ceases to be statistically or

economically significant. Capital formation, in contrast, remains highly sensitive to the

firm-specific financial conditions, with a 100 basis points rise in credit spreads leading to

a drop in the investment rate of more than a full percentage point. All told, these aggre-

gate and firm-level result strongly support the notion that the impact of uncertainty on

investment is influenced to a significant degree by the presence of financial market frictions.

To provide a theoretical context for our empirical findings, we construct a tractable

bond-contracting model of the type analyzed by Bernanke et al. [1999], Cooley and Quadrini

[2001], Hennessy and Whited [2007], and Philippon [2009]. We embed this contracting

framework into a standard capital accumulation problem, in which firms employ a produc-

tion technology that is subject to a persistent idiosyncratic shock, the variance of which is

allowed to vary over time according to a stochastic law of motion. The firms make invest-

ment decisions subject to a full range of choices regarding their capital structure—internal

funds, debt, and equity financing—in an environment where external funds are costly be-

cause of frictions in financial markets.3

The model simulations accord well with our empirical results along a number of dimen-

sion. An increase in uncertainty causes corporate bond prices to fall and credit spreads to

widen immediately as investors demand greater protection against the increased downside

risk. The rise in private yields pushes up the effective cost of capital, because the firms

cannot costlessly replace debt with new equity to finance their investment projects. As

a result, aggregate investment falls in response to an increase in uncertainty. Similar to

the financial accelerator mechanisms emphasized by Kiyotaki and Moore [1997], Bernanke

et al. [1999], Christiano et al. [2009], and Hall [2010], the effect of uncertainty on economic

activity is amplified through the endogenous movements in the price of assets that serve as

3Cooley and Quadrini [2001], Hennessy and Whited [2007], and Philippon [2009] consider similar contract-
ing frameworks, though only in partial equilibrium. Bernanke et al. [1999] do allow for general equilibrium
feedback effects but consider only debt financing. In our setting, the combination of persistent idiosyncratic
productivity shocks and a debt-renegotiation problem delivers a considerably richer set of dynamic impli-
cations, because the joint distribution of productivity shocks and the condition of the firms’ balance sheets
become the state variables of the model.
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collateral for future borrowing.

In contrast to the aforementioned literature, our framework allows for a meaningful

degree of heterogeneity in the technology and financial conditions of firms in the economy. In

such an environment, an increase in uncertainty impedes the amount of reallocation of factor

inputs from less productive firms with high net worth to more productive firms with low net

worth. As a result, fluctuations in uncertainty cause movements in aggregate TFP, which

further amplify the effect of uncertainty on economic activity. This mechanism implies that

capital reallocation in our model is countercyclical, consistent with the evidence reported by

Eisfeldt and Rampini [2006], who motivate the procyclical nature of capital reallocation by

assuming countercyclical capital adjustment costs. In our model, by contrast, the presence

of financial market frictions generates an endogenous increase in the cost of reallocation

during the uncertainty-induced economic downturns, leading to the type of productivity

dynamics emphasized by Kiyotaki [1998].4

The remainder of the paper is organized as follows. Section 2 contains our empirical

findings; the first part focuses on the aggregate time-series evidence regarding the role that

credit spreads play in shaping the dynamic response of the economy to fluctuations in un-

certainty; the second part buttresses our time-series results with new firm-level evidence on

the link between uncertainty, credit spreads, and capital formation. The theoretical model

is presented in Section 3. Section 4 describes the calibration of the model’s parameters,

while Section 5 presents our simulation exercises and discusses the model’s implications

against the background of our earlier empirical findings. Section 6 concludes.

2 Empirical Evidence

2.1 Measuring Time-Varying Economic Uncertainty

We utilize high-frequency (i.e., daily) firm-level equity returns to construct our benchmark

estimate of time-varying economic uncertainty. The advantage of using equity valuations

to measure uncertainty is that asset prices should, in principle, encompass all aspects of

the firm’s environment that investors view as important. Specifically, from the Center for

Research in Security Prices (CRSP) data base, we extracted daily stock returns for all U.S.

nonfinancial corporations with at least 1,250 trading days (essentially five years) of data.

This selection criterion yielded a panel of 10,729 firms over the period from July 1, 1963

(1963:Q3) to December 31, 2009 (2009:Q4).5

4More recently, the role of resource misallocation in shaping productivity dynamics has been analyzed
by Kleenow and Hsieh [2009] and Basu et al. [2009].

5To ensure that our results were not driven by a small number of extreme observations, we eliminated
all observations with a daily absolute return in excess of 100 percent.

3



Our benchmark estimate of uncertainty is based on the following three-step procedure.

In the first step, we remove the systematic component of (excess) equity returns using the

standard Fama and French [1992] 3-factor model:

(ritn − rftn) = αi + βM
i (rMtn − rftn) + βSMB

i SMBtn + βHML
i HMLtn + uitn , (1)

where i indexes firms and tn, n = 1, . . . , N , indexes trading days in quarter t. In equa-

tion (1), ritn denotes the (total) log return of firm i; rftn is the continuously-compounded

3-month Treasury yield (i.e., the risk-free rate); rMtn is the value-weighted (total) log return

for the market as a whole; and SMBtn and HMLtn are the Fama-French “risk” factors.

In the second step, we calculate the quarterly standard deviation of daily idiosyncratic

returns for each firm i:

σit =

√

√

√

√

1

N − 1

N
∑

n=1

(ûitn − ˆ̄uit)2, (2)

where ûitn denotes the OLS residual from equation (1) and ˆ̄uit = N−1
∑N

n=1
ûitn is the

sample mean of daily idiosyncratic returns in quarter t. Thus, σit is an estimate of time-

varying equity volatility for firm i, a measure that abstracts from the common risk factors

that drive differences in expected returns across firms.

In the final step, we assume that the firm-specific uncertainty in equation (2) follows an

autoregressive process of the form:

log σit = γi + δit+ ρ log σi,t−1 + vt + ǫit, |ρ| < 1 and ǫit ∼ N(0, ω2); (3)

where γi denotes a firm fixed effect intended to control for the cross-sectional heterogeneity

in σit, whereas the firm-specific term δit captures the secular upward trend in the idiosyn-

cratic risk of publicly-traded U.S. firms documented by Campbell et al. [2001]. Our bench-

mark estimate of time-varying macroeconomic uncertainty is the sequence of time fixed

effects vt, t = 1, . . . , T , which captures shocks to idiosyncratic volatility that are common

to all firms. We estimate the parameters of equation (3) by OLS, which yields an estimate

of ρ = 0.423, an indication that idiosyncratic equity volatility tends to be fairly persistent.6

The specification also fits the data quite well, explaining almost 75 percent of the variation

in the dependent variable.

Figure 1 shows our benchmark estimate of time-varying uncertainty derived from the

estimated time fixed effects in equation (3).7 The figure also plots the spread between the

6Because the average firm is in the panel for almost 60 quarters, the bias of the OLS estimator, owing to
the presence of a lagged dependent variable and firm fixed effects, is negligible (see, for example, Arellano
[2003]).

7To ease the interpretation, the estimates of vt have been re-scaled and expressed in annualized percent.
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Figure 1: Uncertainty and Corporate Credit Spreads
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Note: Sample period: 1963:Q4–2009:Q4. The solid line depicts our benchmark estimate of
time-varying uncertainty based on equity valuations (see text for details). The dotted line depicts
the spread between the 10-year yield on BBB-rated corporate bonds and the 10-year Treasury yield.
The shaded vertical bars denote NBER-dated recessions.

10-year yield on BBB-rated corporate bonds and the 10-year Treasury yield, an indicator

of conditions in the corporate debt markets. Clearly evident is the fact that both series are

countercyclical, typically rising sharply before recessions.

2.2 Aggregate Time-Series Evidence

In this section, we use a VAR framework to investigate the interaction between our bench-

mark estimate of economic uncertainty, business financial conditions, and real economic

activity. In particular, we estimate a VAR consisting of the following six endogenous vari-

ables: the logarithm of real GDP (yt); the logarithm of real business fixed investment (it);

the logarithm of the GDP price deflator (pt); the (nominal) effective federal funds rate (ft)

as an indicator of the stance of monetary policy; the 10-year BBB-Treasury credit spread

(st); and our benchmark estimate of time-varying uncertainty (vt). The VAR is estimated

over the 1963:Q3–2009:Q4 period using four lags of each endogenous variable and, in ad-

dition to a constant term, also includes dummy variables for 1987:Q4 and 2008:Q4 as two

additional exogenous regressors.8

8The inclusion of these two dummy variables is motivated by the fact that the volatility spike in 1987:Q4
and the surge in uncertainty and credit spreads during the period of acute financial turmoil in late 2008
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We focus on the implications of uncertainty shocks on credit spreads and economic ac-

tivity. To identify these disturbances, we employ a standard recursive ordering technique,

in which shocks to uncertainty have an immediate impact on credit spreads and short-term

interest rates, but they affect the output, investment, and prices with a lag. To provide

a point of comparison, we rely on the same recursive ordering to examine the impact of

shocks to credit spreads—that is, “financial shocks”—that are orthogonal to contempora-

neous movements in uncertainty. We also consider a specification that reverses this causal

ordering, which allows to examine the implications of uncertainty shocks conditional on the

information contained in the current level of credit spreads.

Figure 2 plots the impulse response functions of selected variables to uncertainty and

financial shocks orthogonalized using the baseline identification scheme. Given these identi-

fying assumptions, an unanticipated increase in uncertainty causes an immediate widening

of corporate bond spreads. Moreover, this uncertainty shock has significant adverse conse-

quences for economic activity. Output declines almost immediately, reaching a trough about

a year after the initial spike in uncertainty. The response of investment is considerably more

pronounced and protracted, as capital spending falls steadily, bottoming out almost a full

percentage point below the trend five quarters after the shock. A financial shock, which

causes an increase of about 25 basis points in the 10-year BBB-Treasury spread, similarly

leads to a significant contraction in economic activity. The shock to credit spreads, however,

has no discernible effect on uncertainty.

Figure 3 shows the implications of uncertainty and financial shocks orthogonalized us-

ing an alternative scheme in which credit spreads are ordered before uncertainty. Under

these identifying assumptions, an unanticipated increase in uncertainty has no statistically

discernible effect on the real economy. Financial shocks, in contrast, have significant and

long-lasting effects on both output and investment. A one standard deviation shock to the

10-year BBB-Treasury spread is associated with an immediate jump in uncertainty, a sub-

stantial decline in real GDP, and a protracted fall in business fixed investment. Indeed, the

magnitude and the shape of the impulse response functions of both output and investment

are very similar to those shown in Figure 2.

In summary, the time-series evidence presented above implies that an increase in uncer-

tainty leads to an economically and statistically significant widening of credit spreads on

corporate bonds, a drop in output, and a protracted decline in business fixed investment.

The evidence also suggests that changes in credit conditions are an important part of the

appear to be well outside historical norms. Indeed, standard regression diagnostics indicate that these two
observations exert an unduly large influence on the estimated coefficients, especially in the uncertainty and
credit spread equations. By including these two dummy variables in the VAR, we ensure that our results
are not driven by a small number of extreme observations. Nonetheless, the results reported in the paper
are robust to the exclusion of these two dummies from the VAR.
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Figure 2: Dynamic Implications of Uncertainty and Financial Shocks

(Baseline Identification Scheme)
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Note: The top four panels depict the impulse response functions to an orthogonalized one
standard deviation shock to our benchmark estimate of time-varying uncertainty. The bottom four
panels depict the impulse response functions to an orthogonalized one standard deviation shock to
the 10-year BBB-Treasury spread. The baseline identification scheme corresponds to the following
recursive ordering of the VAR system: (yt, it, pt, vt, st, ft). Shaded bands represent 95-percent
confidence intervals based on 2,000 bootstrap replications.
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Figure 3: Dynamic Implications of Uncertainty and Financial Shocks

(Alternative Identification Scheme)
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Note: The top four panels depict the impulse response functions to an orthogonalized one
standard deviation shock to our benchmark estimate of time-varying uncertainty. The bottom
four panels depict the impulse response functions to an orthogonalized one standard deviation
shock to the 10-year BBB-Treasury spread. The alternative identification scheme corresponds to
the following recursive ordering of the VAR system: (yt, it, pt, st, vt, ft). Shaded bands represent
95-percent confidence intervals based on 2,000 bootstrap replications.
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transmission mechanism propagating uncertainty shocks to the real economy. Indeed, our

results indicate that once shocks to uncertainty are orthogonalized with respect to the

contemporaneous information from the corporate bond market, fluctuations in uncertainty

have no statistically significant effect on economic activity.

2.3 Firm-Level Evidence

In this section, we utilize a new firm-level data set to provide additional evidence regarding

the role of financial market frictions as a determinant of investment dynamics in response

to fluctuations in economic uncertainty. Following Leahy and Whited [1996], our empir-

ical strategy involves regressing investment on the firm-specific estimate of idiosyncratic

uncertainty, while controlling for the fundamental determinants of investment spending.

Given the focus on the interaction between uncertainty and financial frictions, our re-

gression specification also includes credit spreads at the level of an individual firm. To

that purpose, we constructed a panel data set of almost 1,000 publicly-traded U.S. non-

financial firms covered by CRSP and S&P’s Compustat over the 1973–2009 period. The

distinguishing characteristic of these large corporations is that a significant portion of their

outstanding liabilities is in the form of long-term bonds that are actively traded in the

secondary market. We use the secondary market prices of individual securities to construct

firm-level credit spreads, which are then matched to the issuer’s income and balance sheet

data. (The description of the bond-level data set and the details regarding the construction

of credit spreads are contained in Appendix A.)

2.3.1 Uncertainty, Credit Spreads, and Investment

The first empirical exercise using our firm-level data examines the link between credit

spreads and uncertainty. We estimate the following (reduced-form) bond-pricing equation:

log sit[k] = β1 log σit + β2R
E
it + β3[Π/A]it + β4 log[D/E]i,t−1 + θ′xit[k] + ǫit[k], (4)

where log sit[k] denotes the credit spread of a bond issue k in period t, a security that

is a liability of firm i.9 In addition to our estimate of idiosyncratic uncertainty σit (see

equation (2)), credit spreads are allowed to depend on the firm’s repayment prospects, as

measured by the firm’s realized quarterly return on equity RE
it and the ratio of operating

income to assets [Π/A]it, while the ratio of the book value of total liabilities to the market

value of the firm’s equity—denoted by [D/E]it—captures the strength of the firm’s balance

9Although our data on credit spreads are at a monthly frequency, the requisite income and balance
sheet information from Compustat is available only at a quarterly frequency. In addition, the firms’ fiscal
years/quarters end at different months of the year. The timing of our firm-level data reflects these differences
as our observations occur at different months but are spaced at regular quarterly (i.e., three-month) intervals.
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Table 1: Uncertainty and Credit Spreads

Explanatory Variable (1) (2) (3) (4)

log σit 0.876 0.594 0.616 0.238
(0.027) (0.018) (0.018) (0.019)

RE
it -0.351 -0.441 -0.430 -0.233

(0.033) (0.023) (0.023) (0.016)
[Π/A]it -4.598 -2.222 -1.927 -0.915

(0.939) (0.558) (0.511) (0.432)
log[D/E]i,t−1 0.223 0.063 0.067 0.123

(0.043) (0.020) (0.018) (0.015)

Adj. R2 0.472 0.621 0.629 0.785
Credit Rating Effectsa - (0.000) (0.000) (0.000)
Industry Effectsb - - (0.000) (0.000)
Time Effectsc - - - (0.000)

Note: Sample period: bond-level monthly data from January 1973 to Decem-
ber 2009 at a quarterly frequency (No. of firms/bonds = 944/5072; Obs. = 88,447).
Dependent variable is log(sit[k]), the logarithm of the credit spread of bond k in
month t (issued by firm i). All specifications include a constant, a vector of con-
trol variables xit[k] (not reported) and are estimated by OLS. Heteroscedasticity- and
autocorrelation-consistent asymptotic standard errors are clustered at the firm level
and are reported in parentheses.

ap-value for the test of the null hypothesis of the absence of fixed credit rating effects.
bp-value for the test of the null hypothesis of the absence of fixed industry effects.
cp-value for the test of the null hypothesis of the absence of time fixed effects.

sheet. The vector xit[k] contains variables capturing bond- or firm-specific characteristics

that could influence bond yields through either liquidity or term premiums, including the

bond’s duration, the amount outstanding, the bond’s (fixed) coupon rate, and an indicator

variable that equals one if the bond is callable and zero otherwise.10

Table 1 contains these estimation results. According to column 1, an increase in un-

certainty leads to a significant widening of credit spreads—the elasticity estimate of 0.843

implies that an increase in uncertainty of 10 percentage points in quarter t will boost credit

spreads more than 50 basis points. The coefficients on the remaining key variables are

also economically and statistically highly significant and have their expected signs: Strong

profitability performance, as evidenced by a high realized return on equity or an increase

in the ratio of operating income to assets, is associated with a narrowing of credit spreads,

whereas an increase in the debt-to-equity ratio leads to a rise in credit spreads.

10Specification (4) is similar to those used by Bharath and Shumway [2008] to predict credit default
swap and corporate bond yield spreads. As in their paper, our main explanatory variables—volatility,
expected profitability, and leverage—correspond to the “näıve” constituents of the distance-to-default, which,
according to the Merton [1974] model, should be a sufficient statistic for default.
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These results are robust to the inclusion of fixed credit rating effects (column 2) and

to the inclusion of fixed industry effects (column 3). The specification in column 4 also

controls for macroeconomic developments by including a full set of time dummies in the

regression. Although the magnitude of the coefficient on uncertainty diminishes apprecia-

bly in this specification, the impact of uncertainty on credit spreads remains statistically

significant and economically important: A 10 percentage point increase in uncertainty is

associated with a rise in credit spreads of about 15 basis points. These results provide

compelling evidence that fluctuations in uncertainty influence business financing conditions

by significantly altering the level of credit spreads in the corporate bond market.

We now turn to the link between investment, uncertainty, and credit spreads. Our

empirical investment equation is given by the following regression specification:

log[I/K]it = β1 log σit + β2 log sit + θ logZit + ηi + λt + ǫit, (5)

where [I/K]it denotes the investment rate of firm i in period t (i.e., the ratio of capital

expenditures in period t to the capital stock at beginning of the period); σit is our estimate

of idiosyncratic uncertainty; sit is the credit spread on the portfolio of bonds issued by

firm i; and Zit is a proxy for the marginal product of capital, a variable that measures

firm i’s future investment opportunities.11 In addition to uncertainty, credit spreads, and

investment fundamentals, the regression equation (5) includes a fixed firm effect ηi and a

fixed time effect λt—the former controls for systematic differences in the average investment

rate across firms, while the latter captures a common investment component reflecting

macroeconomic factors, which can influence firm-level investment through either output or

interest rates.12

We measure the investment fundamentals Zit using either the current sales-to-capital

ratio [Y/K]it or the operating-income-to-capital ratio [Π/K]it. Taking logs of [Y/K]it is

straightforward, but because operating income may be negative, we use log(c+ [Π/K]it)—

where c is chosen so that (c + [Π/K]it) > 0 for all i and t—when relying on the operating

income to measure the firm’s investment opportunities.13 As an alternative forward-looking

11The frequency of data on capital expenditures and capital stock is annual, but the data are recorded
at different months of the year, reflecting the differences in the fiscal years across firms. As a result, the
uncertainty measure σit in equation (5) is calculated using daily idiosyncratic returns over the 250 trading
days of the firm’s fiscal year, and the credit spread is the average of the monthly credit spreads calculated
over the 12 months of the firm’s fiscal year. For the firms that have more than one bond issue trading in
the secondary market in a given period, we calculate the portfolio spread by computing a weighted average
of credit spreads on the firm’s outstanding bonds, with weights equal to the market value of the issue.

12The log-log nature of regression (5) reflects the fact that the firm-level investment rates, uncertainty, and
credit spreads are highly positively skewed, a feature of the data that is significantly ameliorated through
the use of a logarithmic transformation.

13In principle, the estimated elasticities may depend on the constant c. In practice, however, reasonable
variation in c has no effect on the estimated elasticities.
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Table 2: Uncertainty, Credit Spreads, and Investment

Explanatory Variable (1) (2) (3) (4) (5) (6)

log σit -0.172 -0.086 -0.147 -0.060 0.008 -0.062
(0.039) (0.036) (0.037) (0.037) (0.034) (0.036)

log sit - - - -0.167 -0.149 -0.130
(0.019) (0.018) (0.021)

log[Y/K]it 0.572 - - 0.549 - -
(0.046) (0.045)

log[Π/K]it - 1.292 - - 1.207 -
(0.081) (0.081)

logQi,t−1 - - 0.710 - - 0.641
(0.045) (0.046)

R2 (within) 0.289 0.260 0.251 0.309 0.277 0.262

Note: Sample period: firm-level monthly data from January 1973 to December 2009 at an annual
frequency (No. of firms = 905; Obs. = 8,367). Dependent variable is log[I/K]it, the logarithm of the
(real) investment rate of firm i in year t. All specifications include time fixed effects (not reported)
and firm fixed effects, which are eliminated using the within transformation. The resulting specification
is estimated by OLS. Heteroscedasticity- and autocorrelation-consistent asymptotic standard errors are
clustered at the firm level and are reported in parentheses. Parameter estimates for log[Π/K]it and the
associated standard errors are adjusted for the fact that log[Π/K]it is computed as log(0.5 + [Π/K]it).

measure of investment fundamentals, we also consider Tobin’s Q, denoted by Qit.

Result in columns 1–3 of Table 2 indicate a significant role for uncertainty in the in-

vestment process. Regardless of the measure of investment fundamentals, the coefficient on

uncertainty is statistically highly significant and lies in the range between -0.17 and -0.09.

These estimated elasticities of investment demand with respect to uncertainty imply that a

10 percentage point increase in uncertainty depresses the investment rate between one-half

and three-quarters of a percentage point. However, once the credit spreads are included in

the regression, columns 4–6, uncertainty ceases to be—either statistically or economically—

an important determinant of investment spending. The coefficients on credit spreads, in

contrast, are statistically highly significant and economically large, with a 100 basis points

rise in credit spreads implying a drop in the investment rate of the same magnitude.

As a robustness check, we also considered a dynamic specification of the form:

log[I/K]it = β1 log σit + β2 log sit + θ1 logZit + θ2 log[I/K]i,t−1 + ηi + λt + ǫit.

In this case, we eliminated fixed firm effects using the forward orthogonal deviations trans-

formation and estimated the resulting specification by GMM (cf. Arellano [2003]).14 Al-

14The complete set of results is available from the authors upon request.
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though the lagged investment rate had significant explanatory power, the results regarding

the effect of both uncertainty and credit spreads on investment were virtually the same as

those reported in Table 2. That is, the adverse effect of increased uncertainty on invest-

ment spending was completely attenuated once the information content of credit spreads

was taken into account. In contrast, the impact of the change in this measure of financial

frictions remained statistically and economically highly significant.

In summary, our aggregate time-series and firm-level panel analysis shows that the

uncertainty-investment nexus is strongly influenced by conditions in the corporate bond

market. In particular, increases in economic uncertainty are associated with a substantial

widening of corporate credit spreads, which, in turn, leads to a significant contraction in

economic activity. To the extent that credit spreads provide a useful barometer of the degree

of frictions in the financial system, our empirical evidence indicates that financial frictions

are an important conduit through which shocks in economic uncertainty are propagated to

the real economy.

3 Structural Model

This section presents a general equilibrium model in which fluctuations in economic un-

certainty influence bond prices and investment in a manner consistent with our empirical

findings. The framework includes many of the salient features employed in the literature

that allows for departures from the Modigliani and Miller [1958] paradigm of perfect capital

markets, departures that imply a significant role for financial conditions in the determination

of macroeconomic outcomes. In particular, firms use both internal and external sources of

funds to finance capital expenditures. The presence of capital market imperfections implies

that external funds command a premium and that this external finance premium increases

in response to a rise in uncertainty.

3.1 Preferences, Technology, and Shocks

We consider a model with four types of economic agents: (i) a representative household;

(ii) a continuum of firms producing final goods; (iii) a continuum of firms producing capital

goods; and (iv) bond (i.e., financial) specialists. The representative household lives forever

and maximizes the expected discounted sum of period-specific utilities u(c, h), where c and

h denote consumption of final goods and hours worked, respectively, and the utility function

u(·, ·) is strictly increasing and concave in both arguments. The representative household

earns a competitive real market wage w by working h hours and saves by purchasing equity

shares of firms that produce final goods.

Firms in the final-goods sector combine capital and labor using a decreasing returns-
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to-scale (DRS) Cobb-Douglas technology to produce output, which can be used for con-

sumption or as an intermediate input in the production of new capital goods. The DRS

production technology is subject to a persistent idiosyncratic productivity shock—denoted

by z—that evolves according to

log z′ = ρz log z + log ǫ′; |ρz| < 1 and log ǫ′ ∼ N(−0.5σ2, σ2). (6)

The assumptions underlying the production technology can be summarized by a function

y = zν
(

kαh1−α
)γ
, (7)

where 0 < α < 1 is the value-added share of capital and 0 < γ < 1 is the DRS parameter.

The normalization parameter ν = 1 − (1 − α)γ ensures that the firm’s profit function

π(z, k) = zπ(k) is linear in z.15

Because the producers of final goods employ a DRS technology, they earn strictly positive

profits. To keep the model tractable, we do not explicitly model the firm’s endogenous

entry/exit decision. As in Cooley and Quadrini [2001], we assume that a constant fraction

0 < η < 1 of final-goods producers exogenously exits the market in each period and that

the same number of new firms enters the market within the same period. This stochastic

overlapping generation structure also provides a convenient way to motivate the use of

leverage by firms in the steady state without introducing a corporate income tax shield.

The capital-goods producers combine existing capital and final goods to produce new

capital using a constant returns-to-scale (CRS) technology. The newly-produced capital

is homogeneous and is sold at a competitive market price Q to the firms engaged in the

production of final goods; the price Q denotes the price of capital goods relative to the price

of final goods, the numeraire of the economy. Because of the CRS technology, the producers

of capital goods earn zero profits in equilibrium, and that sector can be represented by a

single firm. Bond investors provide debt financing to firms engaged in the production of final

goods. A CRS technology is available to any bond investor, and the financial industry is

assumed to be competitive. As a result, bond investors also earn zero profits in equilibrium.

To model time-varying economic uncertainty, we assume that the level of idiosyncratic

uncertainty associated with the production technology in the final-goods industry evolves

over time according to a persistent Markov process. Specifically, we assume that σ in

15The profit function can be derived from the following static optimization problem:

max
h

{zν(kαh1−α)γ − wh}.

In contrast to the quasi-fixed nature of capital, labor hours are freely adjustable within a given time period,
making the profit function convex in z̃ ≡ zν . The parameter ν then nullifies this convexity, making the
profit function linear in z.
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equation (6) follows a Markov Chain process with N states and a transition matrix p(σ, σ′).

In our setup, a shock to the level of uncertainty corresponds to an aggregate shock that alters

the level of uncertainty faced by all firms engaged in the production of final goods. Because

ǫ′ is distributed log-normally with E(ǫ′|σ) = exp[0.5σ2 + E(log ǫ′|σ)] = 1, fluctuations in

uncertainty do not change the conditional expectation of the productivity shock z; that is, an

increase in uncertainty represents a mean-preserving spread to the conditional distribution

of profits. As a result, fluctuations in uncertainty in our model do not have any direct

implication for investment dynamics under the standard neoclassical assumptions.

With regards to timing, we assume that all economic agents in the model observe the

realization of the idiosyncratic productivity shock z and the level of uncertainty σ at the

beginning of each period. The timing convention is such that this period’s uncertainty level σ

determines the distribution of ǫ’s in the subsequent period. An increase in uncertainty today,

therefore, represents “news” to the economic agents regarding tomorrow’s distribution of

profits. To streamline notation, we let s = (σ, µ,K)′ denote the vector of aggregate state

variables, where µ denotes the joint distribution of idiosyncratic productivity shocks and

net worth of the final-goods producers, and K is the aggregate stock of capital.

3.2 The Firm’s Problem

To finance investment projects, firms producing final goods use a combination of internal

and external funds, where the sources of external funds are debt and equity. Relative to

internal funds, external funds command a premium, either because of the direct cost of

issuing equity, or in the case of debt, because of the costs associated with default.

The net worth n of a firm engaged in the production of final goods is defined as

n ≡ zπ(k, s) +Q(s)(1− δ)k − b, (8)

where Q(s)(1 − δ)k is the resale value of installed capital k, and b is the face value of the

bond issued by the firm in the previous period; 0 < δ < 1 denotes the depreciation rate

of physical capital. Because we only consider one-period discount bonds, the market value

of debt coincides with the face value of debt as long as the issuer does not default on its

payment obligation.

The bond contract specifies the face value of the issue b′ and the price q, yielding

the total amount of debt financing qb′. Using these and other sources of funds, the firm

purchases capital to be used in production. In the subsequent period—after observing

the realization of shocks—the firm decides whether or not to fulfill its debt obligation. If

the firm decides not to default, it pays the face value of the debt b′ to the lender and

makes its production and financial decisions for the next period. If the firm chooses to
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default, it enters a debt-renegotiation process with the investor. The renegotiation process

is conducted under limited liability by assuming that there exists a lower bound to the net

worth of the firm—denoted by n̄—below which the firm cannot promise to pay back any

outstanding liability.16

Given the price of capital, its capital stock, and the amount of debt outstanding, the

firm defaults if and only if the realized technology is lower than a threshold level z̄, which

is defined as the level that makes the firm’s net worth equal to the default boundary:

n̄ = z̄(k′, b′, s′)π(k′, s′) +Q(s′)(1− δ)k′ − b′. (9)

Equation (9), in turn, defines a threshold level

ǭ ≡ ǭ(k′, b′, z, s′) = exp[log z̄(k′, b′, z, s′)− ρ log(z)],

such that the firm defaults if and only if ǫ′ < ǭ.

Under limited liability, the new level of debt renegotiated by the firm and the investor—

denoted by bR—cannot exceed the amount of debt b̄(k′, z′, s′) that is consistent with the

lower bound of the net worth:

bR ≤ b̄(k′, z′, s′) ≡ z′π(k′, s′) +Q(s′)(1− δ)k′ − n̄.

We assume that the firm does not have any bargaining power during the renegotiation

process. Consequently, the renegotiated debt is set equal to the upper bound of the amount

of debt that can be recovered—that is, bR = b̄(k′, z′, s′).

The default entails a dead-weight loss, captured by bankruptcy costs that are assumed

to be proportional to the face value of the debt outstanding. Thus the actual recovery in the

case of default is given by bR − χb′, where the parameter 0 < χ < 1 governs the magnitude

of the bankruptcy costs and hence the degree of frictions in the corporate bond market.

Therefore, the recovery rate R in the case of default is given by

R(k′, b′, z′, s′) =
b̄(k′, z′, s′)

b′
− χ.

16This type of bond contract is similar to that of Merton [1974], Cooley and Quadrini [2001], and Hennessy
and Whited [2007]. However, in our setup, a default occurs when the net worth of the firm n hits the lower
bound n̄, whereas in the aforementioned literature, a default occurs when the value of the firm V hits the
lower bound V̄ . If the technology shock follows an i.i.d. process and the analysis is conducted in a partial
equilibrium, the two assumptions are equivalent. However, if the technology shock is persistent or the firm’s
value function has other arguments, such as aggregate state variables, the two assumptions are no longer
equivalent. The decision to use a lower bound for the net worth to determine the default threshold is a
simplifying assumption that allows us to avoid the computationally intensive task of inverting the value
function to compute the default boundary n̄(z, s) in each iteration of the dynamic programming routine.
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The price of the bond is then equal to its discounted expected return:

q(k′, b′, z, s) = E

[

m(s, s′)

(

1 +

∫

ǫ′<ǭ

[R(k′, b′, z′, s′)− 1]dH(ǫ′|σ)

)

∣

∣

∣
z, s

]

, (10)

where m(s, s′) = βuc(s
′)/uc(s) is the pricing kernel of the representative household, and

H(·) denotes the CDF of the log-normal distribution. Using the properties of the log-normal

distribution and letting θ̄(k′, b′, z, s′) = 1

σ

[

log ǭ(k′, b′, z, s′) + σ2

2

]

, the price of the bond may

be expressed as

q(k′, b′, z, s) = E

[

m(s, s′)

(

1− Φ
(

θ̄(k′, b′, z, s′)
)

+ Φ
(

θ̄(k′, b′, z, s′)− σ
) zρπ(k′, s′)

b′

+ Φ
(

θ̄(k′, b′, z, s′)
)

(

Q(s′)(1− δ)k′ − n̄

b′
− χ

)

)

∣

∣

∣
z, s

]

;

where Φ(·) denotes the standard normal CDF.

Because firms face a constant probability of exit η, the effective discount rate is equal

to (1 − η)m(s, s′), and risk-free rate 1/E[m(s, s′)|s] is less than the inverse of the firm’s

discount factor 1/(1− η)E[m(s, s′)|s]. As a result, the firms are induced to hold a positive

amount of debt in equilibrium. The exogenous exit shock occurs after the firm makes

the payment decision on its existing debts (b), but before making its investment (k′) and

borrowing decision (b′) for the current period. As a result, the exit shock does not directly

affect the returns of bond investors.

At the margin, firms will only issue debt if equity issuance is also costly. We therefore

posit the existence of a lower bound on dividends—denoted by d̄—and a function governing

the cost of issuing equity.17 Specifically, the functional form of the per-unit cost of issuing

equity is given by

λ(e) = λ1 +
λ2
2
e; λ1, λ2 > 0,

where e is the amount of equity issued by the firm.

Given our setup, the firm’s problem can be expressed recursively. Let d denote the firm’s

dividend:

d = zπ(k, s)−Q(s)[k′ − (1− δ)k]− b+ qb′ + e. (11)

17This modeling device is used by Cooley and Quadrini [2001], Hennessy and Whited [2007], and Jermann
and Quadrini [2009]. More generally, costly equity issuance can be motivated by the existence of moral
hazard or informational asymmetries between insiders and outside equity investors.
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The value of the firm then solves the following dynamic programming problem:

V (n, z, s) = min
φ

max
k′,b′,d,e

{

d+ φ(d− d̄)− [1 + λ(e)]e

+ (1− η)E
[

m(s, s′)max{V (n′, z′, s′), V (n̄, z′, s′)}
∣

∣

∣
z, s
]}

s.t. (12)

n′ = z′π(k′, s′) +Q(s′)(1− δ)k′ − b′,

where φ is the Lagrange multiplier associated with the dividend constraint d ≥ d̄. The

firm’s continuation value is truncated by the default payoff and can be expressed as

E
[

m(s, s′)max
{

V (n′, z′, s′), V (n̄, z′, s′)
}
∣

∣

∣
z, s
]

=

E

[

m(s, s′)

(
∫

ǫ′<ǭ

V (n̄, z′(ǫ′), s′)dΦ(ǫ′) +

∫

ǫ′≥ǭ

V (n′, z′(ǫ′), s′)dΦ(ǫ′)

)

∣

∣

∣
z, s

]

.

The first-order condition for equity issuance equates the shadow value of dividends to

the marginal cost of issuance:

1 + φ = 1 + λ(e) + λ′(e)e,

which implies that φ > 0 when e > 0. In other words, it is never optimal for the firm to

pay out more than the dividend bound d̄ while issuing equity. Because equity financing is

costly, a dollar of issuance reduces the value of existing shares more than a dollar, where the

additional discount is given by λ′(e)e. The optimality of the firm’s financial policy requires

the firm to be indifferent between debt and equity finance. Accordingly, the first-order

condition for debt issuance implies that

q(k′, b′, z, s) + qb(k
′, b′, z, s)b′ = E

[

m(s, s′)

∫

ǫ′≥ǭ

(

1 + λ(e′) + λ′(e′)e′

1 + λ(e) + λ′(e)e

)

dΦ(ǫ′)
∣

∣

∣
z, s

]

, (13)

where the term qb(k
′, b′, z, s)b′ captures the effect of increased leverage on borrowing costs.

The optimality conditions for capital accumulation imply the following Euler equation

for investment:

Q(s) = qk(k
′, b′, z, s)b′

+ (1− η)E

[

m(s, s′)

∫

ǫ′≥ǭ

1 + φ′

1 + φ
[z′πk(k

′, s′) + (1− δ)Q(s′)]dΦ(ǫ′)
∣

∣

∣
z, s

]

.
(14)

This Euler equation has several non-neoclassical features. First, for any given level of

borrowing b′, an increase in capital raises the amount of available collateral and lowers
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the threshold level of technology at which default occurs, effects captured by the term

qk(k
′, b′, z, s)b′ > 0. Second, the firm discounts the future cash-flows using the stochastic

discount factor (1 + φ′)/(1 + φ), which is determined by the trade-off between debt and

equity financing. Lastly, the expected marginal benefit of investment is truncated by the

default boundary ǭ(k′, b′, z, s′), a consequence of introducing strategic default into the firm’s

optimization problem.

3.3 Market Clearing

Aggregate demand for capital is obtained by aggregating the individual demand functions:

I(s) =

∫

k′(n, z, s)di− (1− δ)K(s−1),

where i indexes the continuum of firms in the final-good sector, and the argument n of

function k′(·, ·, ·) pertains to the post-renegotiation value of the firm’s net worth. Capital

is supplied by a capital-goods producing sector that employs a CRS technology and takes

the un-depreciated capital K and final goods I as inputs to produce new capital K ′. The

production of new capital is subject to adjustment costs ξ(I(s)/K(s−1))K(s−1), where the

function ξ(·) is strictly convex. The new capital is sold to the producers of final goods at a

unit price Q(s), which is determined by the marginal cost of production:18

Q(s) = 1 + ξ′(I(s)/K(s−1)).

The efficiency conditions for the representative household can be summarized by a com-

plete set of asset-pricing equations for the continuum of firms producing final goods and

a first-order condition linking the marginal disutility of hours to the valuation of marginal

consumption. The aggregate resource constraint is

C(s) = Y (s)− I(s)− ξ (I(s)/K(s−1))K(s−1)

−

∫

[

1(n(i, s) ≤ n̄)χb(i, s) + 1(e(i, s) ≥ 0)λ(e(i, s))e(i, s)
]

di,

where Y (s) =
∫

y(i)di and 1(·) denotes the indicator function that equals one if the argu-

18The optimization problem of the capital-goods sector—normalized by K given the CRS technology—can
be formulated as

max
I(s)/K(s

−1)

{

Q(s)

[

I(s)

K(s−1)
+ (1− δ)

]

−
I(s)

K(s−1)
−Q(s)(1− δ)− ξ

(

I(s)

K(s−1)

)}

.

Because of the capital adjustment costs, the value of existing capital depends separately on the joint distri-
bution µ of net worth and technology, as well as on the current aggregate capital stock K, as indicated by
the vector of aggregate state variables s = (σ, µ,K)′.
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ment is true and zero otherwise.19 Compared with a frictionless real business cycle model,

this constraint has two non-standard terms: the bankruptcy costs and equity issuance costs,

which represent the loss of resources due to capital market imperfections. Because these

costs are small relative to aggregate output, financial frictions modify the macroeconomic

equilibrium primarily by altering the first-order conditions of the agents, rather than by

directly affecting the available resources.

To fully solve the problem, economic agents need to understand how the aggregate state

variables evolve over time. One of the aggregate state variables is the joint distribution of

net worth and technology across heterogeneous firms. The exact law of motion for this joint

distribution is given by

µ(N0, Z0) =

∫

N0×Z0

[

∫

N×Z

1
(

n′ = max
{

n̄, [z′π(k′(n, z, s), s′)

+ Q(s′)(1− δ)k′(n, z, s)− b′(n, z, s)]
}

G(z′|z, σ)dµ
)

]

dn′dz′,

(15)

where N ⊆ R, Z ⊆ R++, and µ is a measure on the measurable space (N×Z,N×Z), where

N and Z denote Borel sigma algebras generated by the subsets of N and Z, respectively.

Note that µ(N0, Z0) measures the proportion of firms with the net worth and technology in

N0 × Z0 next period, where N0 ∈ N and Z0 ∈ Z. In equilibrium, this measure depends on

(i) the firms’ investment and debt policy functions k′(n, z, s) and b′(n, z, s); (ii) the transition

function G(z′|z, σ) of the idiosyncratic productivity shock z; and (iii) the aggregate market

clearing conditions.20

Following the literature on computable general equilibrium with heterogeneous agents

(cf. Krusell and Smith [1998]), we adopt the assumption of bounded rationality—that is,

the agents concern themselves with only a finite number of moments of the distribution and

use them in log-linear functional forms to forecast equilibrium prices. For computational

purposes, agents in our model carry with them only the first moments of the distribution

of net worth and technology as state variables. Agents use these state variables to forecast

the three prices needed to solve their optimization problems: the marginal utility of the

19We assume that in the aggregate resource constraint there is no loss of output due to the exogenous exit
of firms. That is, “death shocks” are realized after the firms produce output, and we assume that an entrant
who replaces an exiting firm inherits all of its real and financial characteristics. The entry/exit process is
thus fully frictionless and plays no role in the model, other than creating a wedge between the internal rate
of discounting and the risk-free rate.

20Note that the distribution of net worth tomorrow also depends on the price of capital tomorrow—that
is, Q(s′)—because the collateral value of capital tomorrow depends on Q(s′). However, Q(s′) depends on the
distribution of net worth and technology tomorrow, because the demand for capital tomorrow will depend
on that distribution—hence the fixed point problem. Consequently, the aggregate law of motion in the firm’s
problem (12) is given by µ′ = Γ(µ,K, σ, σ′), where we explicitly express the dependency of µ′ on σ′ and σ.
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representative consumer (uc(s)); real wage (w(s)); and the price of capital (Q(s)). The

approximate laws of motion are given by the following system of linear regressions:

logy = C(σ, σ−1) +B logy−1 + e, (16)

where the vector y includes the marginal utility of consumption uc(s), the aggregate net

worth N(s), and the aggregate capital stock K ′(s). The matrix of regression coefficients B

is of the form

B =







0 b12 b13

0 b22 b23

0 b32 b33






,

where the first column of zeros reflects the fact that the marginal utility of consumption is

not a state variable. In the formulation of the aggregate laws of motion, we also allow the

matrix of constants C in equation (16) to depend not only on the current realization of un-

certainty, but also on its value in the previous period. Specifically, the system includes four

distinct constant terms, corresponding to the four possible transitions for the uncertainty

regime (i.e., “low-to-high,” “low-to-low,” etc.).21

4 Calibration

We let the time period t in our model correspond to one year—specifying the model at

an annual frequency reduces computational time substantially. For the most part, our

calibration relies on parameter values that are standard in the literature. However, there

are a number of parameters that are specific to our model, the calibration of which we

discuss below.

To calibrate the curvature of the profit function of firms engaged in the production

of final goods and the parameters governing the stochastic uncertainty process, we utilize

the S&P’s Compustat (quarterly) database. Specifically, we selected from the Compustat

database all U.S. nonfinancial firms with at least 20 quarters of data on sales and capital

over the period 1976:Q1 to 2009:Q4, a procedure yielding an unbalanced panel of 9,469

firms for a total of 540,409 firm/quarter observations.22 To calibrate γ, the DRS parameter

21Importantly, this allows us to obtain a much better goodness-of-fit for the approximate aggregate laws
of motion relative to the specification that allows constant terms to differ only across the two uncertainty
regimes. In the latter case, the goodness-of-fit statistics for the laws of motions—as measured by the R2—
were about 0.70 for most of endogenous aggregates. However, by allowing for regime switching, we obtained
much better goodness-of-fit statistics: R2 = 0.951 for the marginal utility of consumption and R2 = 0.998
for the aggregate net worth. One exception was the law of motion for aggregate capital, where R2 = 0.910
indicates a relatively poor fit.

22Prior to 1976, most firms did not report their capital stock data (i.e., net property, plant, and equipment)
on the quarterly basis. To ensure that our results were not driven by a small number of extreme observations,
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in equation (7), we use this panel to estimate the following revenue function:

log Yit = β logKit + ηi + λt + uit, (17)

where Yit denotes (real) sales of firm i in quarter t, Kit is firm i’s (real) capital stock at

the beginning of the quarter, and the error term uit represents the empirical counterpart

of the productivity shock log zt in our model. In our regression analysis, we include a firm

fixed effect ηi to control for any unobservable (time-invariant) differences in the revenue

process of individual firms, while the time fixed effect λt captures shocks affecting the

profitability of all firms. Equation (17) is estimated by OLS yielding β̂ = 0.618, with the

95-percent confidence interval of [0.606, 0.630]. We calibrate α, the share of capital in the

Cobb-Douglas production function (7) to be 0.30, which together with our estimate of β

implies that γ = 0.84, an estimate of decreasing returns that is within the range of values

estimated in the literature.

We use the residuals from the estimation of the revenue function (17) to calibrate the

process for the idiosyncratic productivity shock. First, the persistence of the productivity

process is obtained by estimating the following pooled regression

ûit = ρzûi,t−1 + ǫit,

which yields (at a quarterly frequency) ρ̂z = 0.77, implying the persistence of the process

at an annual frequency of 0.774 = 0.35; in our calibration, we set ρz = 0.40. Second, if ǫit

is distributed normally, then
√

π/2|ǫ̂it| is an unbiased estimator of the standard deviation

of ǫit.

To obtain a corresponding measure of time-varying uncertainty, we estimate the follow-

ing panel regression:

log

[
√

π

2
|ǫ̂it|

]

= γi + vt + ζit, ζit ∼ N(0, ω2),

where γi and vt denote fixed firm and time effects, respectively. In keeping with our earlier

approach, a measure of uncertainty based on the shocks to the revenue function—shown in

Figure 4—corresponds to the estimated sequence v̂t, t = 1, . . . , T , which captures common

movements in the idiosyncratic uncertainty regarding the profitability prospects in the non-

financial corporate sector.23 Note that like its counterpart based on equity valuations, this

estimate of uncertainty is countercyclical, typically rising before an onset of an economic

downturn.

we dropped from the sample all observations with the sales-to-capital ratio below 0.01 and above 20.0.
23To ease the interpretation, the estimates of fixed time effects vt have been re-scaled, seasonally adjusted

using the X11 filter, and expressed in annualized percent.
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Figure 4: Uncertainty Based on Revenue Shocks
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Note: Sample period: 1976:Q1–2009:Q4. The figure depicts an estimate of time-varying
uncertainty based on shocks to the firm’s revenue function (see text for details). The shaded
vertical bars denote NBER-dated recessions.

In our simulations, the uncertainty process for σ is assumed to evolve according to

a two-state Markov chain, with the two states corresponding to the “low” and “high”

uncertainty regimes. To calibrate the Markov chain, we first estimate an AR(1) process

for our measure of uncertainty based on the revenue shocks and then use the approach

of Tauchen [1986] to discretize the process. Estimating v̂t = µ + ρσv̂t−1 + et, yields an

estimate of the autoregressive parameter ρσ = 0.82, with the 95 percent confidence interval

of [0.72, 0.92]. We set the level of uncertainty corresponding to the low uncertainty regime—

denoted by σL—to 35 percent and that in the high uncertainty regime—denoted by σH—to

55 percent; the steady-state level of dispersion σ̄ is calibrated to 45 percent. The values

for σL and σH correspond approximately to the 5th and 95th percentiles of the distribution

of our uncertainty measures, whereas the value of σ̄ is slightly below the median of the

distribution. The probability that the uncertainty regime in period t+1 will be the same as

in period t is set to 0.70, implying an AR(1) representation (at an annual frequency) with

ρσ = 0.824 = 0.45.

We calibrate the degree of financial frictions in the bond market—the bankruptcy cost

parameter χ—to match the median credit spread of 160 basis points for the 10-year BBB-

Treasury spread over the 1976–2009 period. Accordingly, we set χ = 0.12, a value consis-
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tent with that used by Bernanke et al. [1999] and the micro-level evidence of Levin et al.

[2004] and one that implies a relatively modest degree of welfare loss from bankruptcy.

In calibrating the survival probability, we follow Carlstrom and Fuerst [1997] and let

1−η = 0.954 = 0.80. The parametric form of per-unit cost of issuing equity λ(e) = λ1+
λ2
2
e

implies that the marginal cost of issuing shares equals 1 + λ1 + λ2e. We set λ1 = 0.15 and

λ2 = 0.50, values that generate a substantial price discount on newly issued equity and

imply that equity is not a preferable source of external finance unless the firm is facing a

substantial default-risk premium in the bond market.24 This calibration generates a share of

equity in total external financing of 11 percent, a proportion that is roughly in line with the

average share of 8 percent reported by Bolton and Scharfstein [1996] for the U.S. corporate

sector.

We consider two representations for the preferences of the representative household—a

utility function that is separable in the marginal utilities of consumption and leisure and

one that is not.25 For our baseline case, we assume a log utility of consumption and linear

disutility for hours: u(c, 1 − h) = log c + ψ(1 − h). In the non-separable case, we follow

Greenwood et al. [1988] (GHH hereafter) and let u(c, 1 − h) = log[c − (ψ/θ)hθ], with the

Frisch elasticity of labor supply 1/(θ − 1) = 1.7.26 The household’s subjective discounting

factor is set equal to 0.994 = 0.96, so that the annual risk-free rate is equal to 4 percent in

the steady state.

The annual depreciation rate of physical capital δ is set to 18 percent, a value con-

sistent with the firm-level Compustat data. We employ the following standard quadratic

specification for the capital adjustment cost function: ξ(I/K) = ϑ
2
(I/K − δ)2. There is

no clear consensus in the literature regarding the value of the adjustment cost parameter

ϑ, with the range of published estimates running from 0.13 to 20.0. Early empirical work

in particular has found a substantial degree of adjustment costs in the investment process,

24Our calibration of the cost of equity issuance falls in the range of empirical estimates found in the
corporate finance literature. For example, the estimates of the cost for seasoned equity offerings range
between 8 to 10 percent of the amount issued—where these costs include both the underwriting fee and
the initial price discount—while the costs of private equity investment in public equity can be as high as
20 percent of the amount sold; see, for example, Hertzel and Smith [1993] and Wu [2004].

25The latter case is motivated by the fact that the driving force of economic fluctuations in our model
works directly through the investment demand rather than through the resource constraint of the economy, as
would be the case if the business cycles were due entirely to the fluctuations in TFP. In such an environment,
the separability of marginal utility of consumption from that of leisure has important consequences for the
comovement of key macroeconomic aggregates; see, for example, Barro and King [1984] and Greenwood
et al. [1988]

26In the baseline case, the first-order condition with respect to hours worked is given by w(s) = ψ/uc(s) =
ψc(s), which implies that the labor supply function does not have to be approximated separately from the
marginal utility of consumption in order to determine hours worked. As a result, h(s) can be omitted from
the vector y that describes the evolution of the aggregate state variables. In the case of the GHH preferences,
in contrast, the first-order condition for hours worked is given by h(s) = [ψw(s)]1/(1−θ), which implies that
the marginal utility of consumption and the labor supply function must be approximated separately.
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while the more recent work indicates that this friction is likely to be less important. For

example, using a large firm-level panel, Gilchrist and Himmelberg [1995] estimated ϑ to be

around 3.0; using a simulation-based estimation method and plant-level data, Cooper and

Haltiwanger [2006] estimated ϑ to be 0.13, when allowing for only convex adjustment costs

in the capital adjustment process. In light of this evidence, we set ϑ = 1.0.27

5 Simulation Results

5.1 Bond Pricing and Investment Policy

To examine the key features of our model, we first solve the model for the bond-pricing and

investment policy functions by abstracting from the aggregate variation in idiosyncratic

uncertainty. The top panel of Figure 5 shows the bond price (q) as a function of the firm’s

capital assets (k′) and debt outstanding (b′), both of which are expressed relative to their

steady-state values. The pricing surface has two distinct regions: A plateau in which the

firm’s leverage ratio b′/k′ is sufficiently low so that the default probability is essentially

zero and the price of debt is insensitive to the changes in the firm’s financial condition; and

a downward-sloping region, in which the firm faces increasing marginal cost of borrowing,

and the price of debt drops sharply in response to an increase in leverage.

The bottom panel of the figure depicts the firm’s optimal investment policy (k′) as a

function of net worth (n) and the technology level (z), with all variables again scaled by

their respective steady-state levels. Like its optimal financial policy function, the firm’s

investment policy also exhibits a significant nonlinearity. In particular, at low levels of net

worth, investment—for a given technology level—is highly responsive to the movements in

the firm’s net worth.

In Figure 6, we overlay the distribution of the debt-to-capital ratio of our model economy

with the bond-pricing functions corresponding to the two uncertainty regimes.28 When

uncertainty is low, debt financing is relatively cheap and leverage is high. The overall

distribution—across firms and time—of the debt-to-capital ratio is bimodal, reflecting the

convolution of the distributions corresponding to the two uncertainty regimes. As shown

in the figure, an increase in uncertainty affects aggregate investment by boosting the firms’

borrowing costs, as evidenced by the downward shift in the bond-pricing function when the

economy switches from a low to a high uncertainty regime. Faced with a significantly higher

27The model dynamics do not appear to be very sensitive to the value of ϑ, at least within the 0.13 to 3.0
range. A higher value of ϑmakes investment smoother by inducing a greater friction in the capital adjustment
process; at the same time, higher capital adjustment costs make investment more volatile, because the value
of collateral assets becomes more sensitive to cyclical fluctuations. The two effects tend to offset each other
in our simulations.

28The functions shown in Figure 6 are computed in a partial equilibrium setting, so that the risk-free rate
is not affected by the change in the level of uncertainty.
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Figure 5: Optimal Policy Functions
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Note: Panel (a) depicts the bond price (q) as a function of the firm’s capital assets (k′) and
debt outstanding (b). Panel (b) depicts the firm’s optimal investment policy (k′) as a function of
net worth (n) and the level of technology (z). All variables are expressed relative to their respective
steady-state values. The policy functions are computed under the assumption of no aggregate shock
to idiosyncratic uncertainty (see text for details).
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Figure 6: Uncertainty and the Bond-Pricing Policy Function
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Note: The histogram depicts the model-implied distribution—across firms and time—of the
debt-to-capital ratio (b/k). The solid line depicts the optimal bond-pricing policy as a function of
the debt-to-capital ratio in the low uncertainty regime (σL = 0.35), and the dotted line depicts the
bond-pricing policy function in the high uncertainty regime (σH = 0.55).

cost of debt finance, firms in the model simultaneously deleverage and cut back on capital

expenditures.

5.2 Uncertainty, Credit Spreads, and Economic Fluctuations

We now report our main simulation results.29 The simulation is designed so that the average

level of technology in the economy is constant, while the dispersion of technology fluctuates

over time according to the two-state Markov chain process. The solid line in Figure 7

shows the the model-implied credit spread computed under the risk-neutral measure, using

the baseline specification of the preferences of the representative household (i.e., log utility

of consumption and linear disutility of hours worked). The shaded vertical bars indicate

periods in which the economy is in the high uncertainty regime.

According to the figure, periods of heightened uncertainty are associated with elevated

credit spreads. In the transition from the state of low uncertainty to that of high uncertainty,

29The model is simulated for 400 periods (i.e., years), assuming that there are always 10,000 firms in the
economy. All the figures show the simulated time path of the model’s key financial and macroeconomic
variables for 100 “years” of data, corresponding to the period from t151 to t250. All the statistics based on
the simulated data are computed using the full sample of 400 observations.
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Figure 7: Uncertainty and Credit Spreads
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Note: The figure shows the simulated time path of the average credit spread based on bond
prices computed under the risk-neutral measure, using the baseline specification of the preferences
of the representative household (see text for details). The shaded vertical bars correspond to periods
of high uncertainty.

credit spreads jump about 150 basis points and then tend to increase another 60 basis points

or so as the high uncertainty regime persists. This further worsening of credit conditions

reflects the endogenous interaction between the real and financial sides of the economy. In

particular, the transition to the state of high uncertainty depresses investment because the

resulting increase in the downside risk leads to a widening of credit spreads. The initial drop

in investment has adverse implications for both current asset prices and future profits, which

raises the likelihood of subsequent defaults and causes credit spreads to widen further—the

financial accelerator mechanism.

Figure 8 displays the evolution of the key macroeconomic aggregates—expressed in

deviations from their steady-state values—in the baseline specification of our model. As

shown by the black line, the transition from a low to a high uncertainty regime is associated

with an immediate drop in aggregate investment; conversely, the transition from a high to

a low uncertainty regime generates an investment boom. The size of these fluctuations is

quite substantial, ranging between 10 to 15 percent of the steady-state level of investment.

Figure 8 also shows that our model implies a high degree of comovement between ag-
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Figure 8: Uncertainty and Real Economic Activity
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Note: The figure shows the simulated time path of aggregate investment (solid line), consump-
tion (dotted line), and output (dashed line), using the baseline specification of the preferences of
the representative household (see text for details). All three series are expressed in percentage-point
deviations from their steady-state values. The shaded vertical bars correspond to periods of high
uncertainty.

gregate consumption, investment, and output. In Table 3, we compare some standard

business cycle statistics to their model-implied counterparts. Recall that the baseline case

corresponds to the model with the log utility of consumption and linear disutility of hours

worked, whereas the GHH model denotes the specification with non-separable preferences.

The top panel of the table shows that, with the exception of personal consumption expen-

ditures, our model successfully replicates the relative volatilities of the key macroeconomic

aggregates. In particular, in both specifications, the model-implied investment is two to

three times more variable than output, a result that accords well with the U.S. historical

experience. In the baseline model, the relative volatility of the model-implied hours is very

close to that observed in the actual data, while the relative volatility of hours worked in

the model with GHH preferences is too low, reflecting in part the excessive variability of

output.

The bottom panel of the table summarizes the comovement properties of the model.

As shown in the middle column, our baseline case implies a strong comovement among the

main endogenous quantities. With the exception of hours worked, the correlation coeffi-
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Table 3: Descriptive Business Cycle Statistics

Relative Standard Deviationa

Variable Actual Data Baseline Model GHH Model

Consumption 0.541 0.704 0.863
Investment 3.343 3.315 2.207
Hours 1.217 1.120 0.671
Measured TFP 1.363 0.861 0.571

Memo: STD(Y ) 0.014 0.019 0.025

Correlation with Output

Variable Actual Data Baseline Model GHH Model

Consumption 0.875 0.859 0.950
Investment 0.833 0.771 0.746
Hours 0.900 0.814 0.989
Measured TFP 0.819 0.811 0.815

Memo: Corr(C, I) 0.736 0.375 0.526

Note: Sample period for the actual annual data: 1954–2009 (T = 56). Actual
data are in logs and have been detrended using the Hodrick-Prescott filter with λ =
6.25; see Ravn and Uhlig [2002] for details.

aScaled by the standard deviation of detrended output.

cients based on the simulated data from the baseline economy closely match their empirical

counterparts, a rather remarkable result given that all the comovements are generated in

the absence of shocks to the technological frontier. Although the level of technology is not

changing in response to the fluctuations in uncertainty, resources are nevertheless being

reallocated from high productivity firms with low net worth to low productivity firms with

high net worth because of the constraints imposed on capital formation by the increased

severity of financial frictions. As a result, the model implies a positive correlation between

measured TFP and output fluctuations that is also very close to the one found in the U.S.

data.30

Unlike technology shocks, which affect the agents’ behavior by altering the supply side of

the economy, uncertainty shocks also affect the cost of investment relative to consumption

and thus are akin to the “investment efficiency shocks” of Greenwood et al. [1988]. A shock

that increases the rate of return on investment will also cause a temporary decline in con-

sumption and an increase in labor supply through the intertemporal substitution of leisure.

30For this comparison, we constructed a TFP series for both the data and the model economies using
the conventional formula: TFP = exp[log(Y ) − 0.3 log(K) − 0.7 log(L)]. Correcting for the effects of a
DRS technology matters very little for our conclusion.
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Table 4: Cyclical Properties of Aggregate Investment

Correlation with Investment Growth

Variable Actual Data Baseline Model GHH Model

Credit spread -0.597 -0.536 -0.345
Net worth growth 0.390 0.498 0.417
Uncertainty -0.360 -0.592 -0.360

Note: Sample period for the actual quarterly data: 1963:Q4–2009:Q4 (T = 185).
Entries for the actual data are the correlations between the log-difference of real
business fixed investment, the level of the 10-year BBB-Treasury spread, the log-
difference of real net worth for the nonfinancial corporate sector, and our benchmark
estimate of time-varying uncertainty.

The productivity benefits associated with capital reallocation strengthen the wealth effect,

which in the baseline model implies procyclical consumption and countercyclical hours. In

contrast, owing to the strong complementarity, the model with GHH preferences produces a

positive comovement between consumption and hours. As a result, the correlation between

output and hours is positive and of the same order of magnitude as that seen in the data.

In addition, the correlation coefficient between consumption and investment accords much

better with its empirical counterpart.

The results in Table 4 indicate that our model also captures quite well the cyclical co-

movements between investment, the key financial variables—credit spreads and borrowers’

net worth—and uncertainty. In particular, both model specifications deliver a strong neg-

ative correlation between investment growth and credit spreads, though the magnitude of

this negative comovement accords somewhat better with the actual data in the baseline

case. In contrast, the model with GHH preferences is able to match much more closely the

observed positive correlation between the changes in the net worth of the U.S. nonfinan-

cial corporate sector and the growth rate of business fixed investment.31 In addition, the

correlation between uncertainty and investment growth in the specification with the GHH

preferences is essentially identical to the one found in the data.

5.3 Capital Reallocation

As shown by Eisfeldt and Rampini [2006], the benefits of capital reallocation increase during

economic downturns, while the actual amount of capital reallocation declines during reces-

sions. In our model, the benefits of capital reallocation are also countercyclical, because the

31The net worth data come from the Federal Reserve’s Z.1 statistical releases, “Flow of Funds Accounts
of the United States.” The nominal net worth series was deflated by the implicit GDP price deflator.
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Table 5: Cyclical Properties of Capital Reallocation

Variable Baseline Model GHH Model

Output 0.752 0.814
Consumption 0.782 0.796
Investment 0.370 0.482
Measured TFP 0.752 0.903

Memo: RAC/Investment 0.317 0.317

Note: Entries in the table denote the correlation coefficients between RAC—our
measure of capital reallocation—and the specified variable, measured in percentage-
point deviations from their steady-state values. Capital reallocation is defined as the
sum of all investment flows associated with the redeployment of the existing capital
stock (see text for details).

increase in dispersion of productivity shocks is the cause of the economic downturn. Capi-

tal reallocation (RAC) can be measured as the difference between gross and net investment

flows:

RACt =
∑

n

wnt (|int| − int) , (18)

where int is the investment of firm n in period t and wnt = knt/
∑

knt is the corresponding

weight. In effect, equation (18) measures reallocation as the amount of capital that changes

ownership across firms.

Table 5 examines the cyclical properties of this reallocation measure for both the baseline

and GHH model specifications. According to the memo item in the table, the amount of cap-

ital reallocation—measured as a proportion of the steady-state level of gross investment—is

substantial in both model specifications and very close to that calculated by Eisfeldt and

Rampini [2006] using the firm-level Compustat data. Moreover, capital reallocation in both

specifications is strongly procyclical, as evidenced by the positive correlation of RAC with

the key economic aggregates.32 More importantly, the amount of capital reallocation moves

closely with the fluctuations in TFP, with the correlation coefficients in the range of 0.75

to 0.90. A similar degree of comovement was obtained by Eisfeldt and Rampini [2006] by

assuming countercyclical capital adjustment costs. Our setup, in contrast, uses financial

market frictions to effectively endogenize the countercyclical nature of capital adjustment

32The correlation between RAC and output shown in the table is somewhat higher than that reported by
Eisfeldt and Rampini [2006]. This difference, however, seems natural—in our model, there is only one shock
that affects the dispersion of productivity. As emphasized by Eisfeldt and Rampini [2006], new investment
is driven by the changes in aggregate productivity, while the amount of capital reallocation is influenced
mainly by the differences in productivity across firms. In reality, however, there are likely multiple shocks
that affect macroeconomic outcomes, with some of these shocks having a direct impact on the aggregate
productivity, thereby dampening the degree of comovement seen in the data.
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Table 6: Uncertainty and the Corporate Bond Market

Uncertainty, Credit Spreads, and the Risk Premium

Credit Spread (bps.) Actual Dataa Baseline-PHM Baseline-RNM

Unconditional 161 164 174
Conditional on σ = σL - 94 96
Conditional on σ = σH - 256 277

Uncertainty and Default Rates

Default Rate (pct.) Actual Datab Baseline-PHM Baseline-RNM

Unconditional 0.38 2.37 2.40
Conditional on σ = σL - 1.88 1.88
Conditional on σ = σH - 3.00 3.04

Note: PHM = physical measure; RNM = risk-neutral measure; σ = σL corresponds to the low
uncertainty regime; and σ = σH corresponds to the high uncertainty regime.

aAverage 10-year BBB-Treasury credit spread (1976:Q1–2009:Q4).
bAverage quarterly U.S. nonfinancial bond default rate (1981:Q1–2009:Q4).

costs—the intensification of financial frictions during an economic downturn limits the firm’s

investment relative to its fundamentals as measured by the changes in productivity.33

5.4 Uncertainty and the Risk Premium

As documented in the corporate finance literature (Elton et al. [2001]), traditional debt-

contracting models imply counterfactually low credit spreads—and hence significant risk

premiums—given the observed probabilities of default and actual recovery rates. In this

section, we examine the behavior of the bond risk premium by decomposing the average

credit spread implied by our baseline model into two components: the credit spread based

on the physical measure and the risk premium.

The results of this exercise, which are shown in the top panel of Table 6, indicate

only a modest role for the risk premium as a determinant of yield spreads on corporate

debt. The unconditional risk premium in our baseline model—the difference between the

average credit spread computed under the risk-neutral measure (RNM) and that under the

physical measure (PHM)—is only 10 basis points. In addition to accounting, on average,

for only small portion of credit spreads, the risk premium is present only during regimes

of high uncertainty—conditional on the economy being in the high uncertainty regime, the

33Khan and Thomas [2008] reach a similar conclusion in a dynamic general equilibrium setup with bor-
rowing constraints and a partial investment irreversibility.

33



Figure 9: Uncertainty and Corporate Bond Defaults
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Note: Sample period: 1981:Q4–2009:Q4. The solid line depicts our benchmark estimate of
time-varying uncertainty based on equity valuations (see text for details). The dotted line depicts
the nonfinancial bond default rate in quarter t, calculated as the sum of defaults during the quarter,
divided by the amount outstanding at the beginning of the quarter. The shaded vertical bars
represent the NBER-dated recessions.

premium is about 20 basis points, while it is essentially zero in the low uncertainty regime.

Although the risk premium is clearly countercyclical, the model is unable to generate a

premium that can systematically account for a significant portion of credit spreads.

Because our baseline specification of the model is calibrated to match the average level of

credit spreads, an implication of these findings is that the model-implied default rates exceed

those found in the data by a considerable margin. According to the available evidence, the

unconditional model-implied default rates are, on average, about 2.0 percentage points

higher than the actual average default rate on nonfinancial corporate bonds (bottom panel

of Table 6). The inability of our model to match more closely the observed average default

rate is due in part to the more general failure of the expected utility theory to provide

empirically realistic risk premiums. Although the average excess return on both stocks and

corporate bonds in our model is strongly procyclical, the average risk premium in both

markets is substantially lower than their respective empirical counterparts.34

34In an attempt to resolve this type of pricing anomalies, Gomes and Schmid [2009] incorporate the
Epstein-Zin preferences into a dynamic general equilibrium setting with costly state verification, while Chen
et al. [2009] embed the standard Merton framework into a partial equilibrium framework with habit for-
mation. Both approaches make some important progress in helping to resolve the “credit spread” puzzle.
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Figure 10: Uncertainty and External Financing Patterns
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Note: The solid line shows the model-implied share of equity financing, and the dotted line
depicts the debt-to-capital ratio, expressed in percentage-point deviations from its steady-state
value. The shaded vertical bars correspond to periods of high uncertainty.

While the model is unable to deliver empirically realistic default rates, it does predict

that defaults should rise in periods of heightened uncertainty. According to Figure 9, this

is indeed the case—our benchmark estimate of uncertainty is highly positively correlated

with the realized bond defaults. In addition, the average actual bond default rate during

the last three recessions is considerably closer to the average model-implied default rate,

conditional on the economy being in the high uncertainty regime.

5.5 External Financing Patterns

As shown by the solid line in Figure 10, firms seek to avoid the increased cost of bond

finance associated with the elevated uncertainty by issuing equity and deleveraging their

balance sheets. The extent of this substitution, however, is limited. In our model economy,

equity, on average, accounts for about 11 percent of all external funds. Despite the sharp

However, Gomes and Schmid [2009] allow for only the extensive margin of investment and abstract from
the endogenous labor supply decision, an approach that makes it difficult to analyze the business cycle
implications of their model. Chen et al. [2009] show that it is necessary to introduce a procyclical de-
fault boundary—essentially a shorter distance-to-default in recessions—to generate a sufficiently large risk
premium component of corporate credit spreads.
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increase in volume, the share of equity financing rises only about 10 percentage points in the

high uncertainty regimes. In effect, rising marginal cost limit the amount of equity issued.

According to Figure 10, the model-implied share of equity finance is countercyclical,

while the leverage is procyclical. Although the latter result is consistent with the data, the

model-implied pattern of equity financing runs contrary to the observed cyclical behavior

of equity issuance.35 This counterfactual result likely reflects the reduced-form nature of

the costs governing equity issuance. In particular, a more realistic description of external

financing patterns would recognize that a firm issuing equity in an environment of elevated

economic uncertainty may face moral hazard or asymmetric information problems similar

to those encountered when trying to place debt with the bond investors.

6 Conclusion

According to the standard macroeconomic theory, investment irreversibilities are the main

channel through which fluctuations in uncertainty affect capital formation. In this paper,

we exploit the implications of uncertainty for the cost of external debt finance by developing

a general equilibrium framework in which financial market frictions provide the link between

uncertainty and the aggregate investment cycle. The notion that conditions in the financial

markets are an important conduit through which fluctuations in uncertainty are transmitted

through to the real economy is strongly supported by our empirical evidence. According to

both the macro and micro data, increases in uncertainty lead to the widening of spreads on

corporate bonds and protracted declines in investment and output.

The quantitative general equilibrium structure of our model implies that empirically

realistic increases in uncertainty can replicate the negative comovement between credit

spreads and investment, the positive comovement between net worth and investment, while

also accounting for many of the salient characteristics of the business cycle fluctuations.

By allowing for heterogeneity in productivity and net worth across firms, the model also

implies an important reallocation mechanism for the economy as a whole, a mechanism

that generates a procyclical reallocation of factor inputs and, as a result, procyclical move-

ments in measured TFP. Overall, our simulations demonstrate that fluctuations in economic

uncertainty have important consequences for macroeconomic outcomes in an environment

that allows for the departures from the Modigliani-Miller paradigm of frictionless financial

markets.

35Choe et al. [1993] and Bayless and Chaplinsky [1996] provide microeconomic evidence regarding the
procyclical nature of equity financing. In contrast, Jermann and Quadrini [2009] show that aggregate equity
issuance is countercyclical. Covas and Den Haan [2007] show that this dichotomy reflects the disproportionate
influence of very large firms.
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Appendices

A Data Sources and Methods

The key information underlying the firm-level analysis comes from a large sample of
fixed income securities issued by U.S. nonfinancial corporations. Specifically, from the
Lehman/Warga (LW) and Merrill Lynch (ML) databases, we obtained month-end prices of
outstanding long-term corporate bonds that are actively traded in the secondary market.36

To guarantee that we are measuring borrowing costs of different firms at the same point
in their capital structure, we restricted our sample to senior unsecured issues with a fixed
coupon schedule only. For such securities, we spliced their month-end prices across the two
data sources.

The micro-level aspect of our data set allows us to construct credit spreads that are
not subject to the maturity/duration bias. In particular, we construct for each individual
bond issue a theoretical risk-free security that replicates exactly the promised cash-flows of
the corresponding corporate debt instrument. For example, consider a corporate bond k
issued by firm i that at time t is promising a sequence of cash-flows {C(s) : s = 1, 2, . . . , S},
consisting of the regular coupon payments and the repayment of the principle at maturity.
The price of this bond in period t is given by

Pit[k] =
S
∑

s=1

C(s)D(ts),

where D(t) = e−rtt is the discount function in period t. To calculate the price of a cor-

responding risk-free security—denoted by P f
t [k]—we discount the promised cash-flow se-

quence {C(s) : s = 1, 2, . . . , S} using continuously-compounded zero-coupon Treasury yields
in period t, obtained from the daily estimates of the U.S. Treasury yield curve reported by
Gürkaynak et al. [2007]. The resulting price P f

t [k] can then be used to calculate the yield—

denoted by yft [k]—of a hypothetical Treasury security with exactly the same cash-flows as

the underlying corporate bond. The credit spread sit[k] = yit[k]−y
f
t [k], where yit[k] denotes

the yield of the corporate bond k, is thus free of the “duration mismatch” that would occur
were the spreads computed simply by matching the corporate yield to the estimated yield
of a zero-coupon Treasury security of the same maturity.

To ensure that our results are not driven by a small number of extreme observations, we
eliminated all bond/month observations with credit spreads below 5 basis points and with
spreads greater than 3,500 basis points. In addition, we dropped from our sample very small
corporate issues—those with a par value of less than $1 million—and all observations with a

36These two data sources are used to construct benchmark corporate bond indexes used by the market par-
ticipants. Specifically, they contain secondary market prices for a significant fraction of dollar-denominated
bonds publicly issued in the U.S. corporate cash market. The ML database is a proprietary data source of
daily bond prices that starts in 1997. Focused on the most liquid securities in the secondary market, bonds
in the ML database must have a remaining term-to-maturity of at least two years, a fixed coupon sched-
ule, and a minimum amount outstanding of $100 million for below investment-grade and $150 million for
investment-grade issuers. By contrast, the LW database of month-end bond prices has a somewhat broader
coverage and is available from 1973 through mid-1998 (see Warga [1991] for details).
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remaining term-to-maturity of less than one year or more than 30 years; calculating spreads
for maturities of less than one year and more than 30 years would involve extrapolating
the Treasury yield curve beyond its support.37 These selection criteria yielded a sample of
5,378 individual securities between January 1973 and December 2009. We matched these
corporate securities with their issuer’s quarterly and annual income and balance sheet data
from Compustat and daily data on equity valuations from CRSP, yielding a matched sample
of 944 firms.

Table A-1 contains summary statistics for the key characteristics of bonds in our sample.
Note that a typical firm has only a few senior unsecured issues outstanding at any point
in time—the median firm, for example, has two such issues trading at any given month.
This distribution, however, exhibits a significant positive skew, as some firms can have
as many as 74 different senior unsecured bond issues trading in the market at a point in
time. The distribution of the real market values of these issues is similarly skewed, with the
range running from $1.2 million to more than $5.6 billion. Not surprisingly, the maturity of
these debt instruments is fairly long, with the average maturity at issue of about 13 years.
Because corporate bonds typically generate significant cash flow in the form of regular
coupon payments, the effective duration is considerably shorter, with both the average and
the median duration of about 6 years.

According to the S&P credit ratings, our sample spans the entire spectrum of credit
quality, from “single D”to “triple A.” At “BBB1,” however, the median bond/month ob-
servation is still solidly in the investment-grade category. Turning to returns, the (nominal)
coupon rate on these bonds averaged 7.31 percent during our sample period, while the av-
erage total nominal return, as measured by the nominal effective yield, was 7.82 percent
per annum. Reflecting the wide range of credit quality, the distribution of nominal yields is
quite wide, with the minimum of 0.66 percent and the maximum of more than 44 percent.
Relative to Treasuries, an average bond in our sample generated a return of about 202 basis
points above the comparable risk-free rate, with the standard deviation of 284 basis points.

37We also eliminated a small number of putable bonds from our sample.
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Table A-1: Summary Statistics of Corporate Bond Characteristics

Bond Characteristic Mean SD Min P50 Max

# of bonds per firm/month 2.83 3.46 1.00 2.00 74.0
Mkt. value of issuea ($mil.) 310.1 315.6 1.22 231.0 5,628
Maturity at issue (years) 13.3 9.5 1.0 10.0 50.0
Term to maturity (years) 11.4 8.6 1.0 8.2 30.0
Duration (years) 6.50 3.20 0.91 6.10 15.6
Credit rating (S&P) - - D BBB1 AAA
Coupon rate (pct.) 7.31 1.95 1.95 7.00 17.5
Nominal effective yield (pct.) 7.82 3.24 0.66 7.25 44.3
Credit spread (bps.) 202 284 5 116 3,499

Panel Dimensions

Obs. = 345, 785 N = 5, 378 bonds
Min. Tenure = 1 Median Tenure = 53 Max. Tenure = 327

Note: Sample period: Monthly bond-level data from January 1973 to December 2009 for
a sample of 944 nonfinancial firms. Sample statistics are based on trimmed data (see text for
details).

aMarket value of the outstanding issue deflated by the CPI (1982–84 = 100).
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